PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Pulse-driven switching in one-dimensional nonlinear photonic band gap materials:
a numerical study

E. Lidorikis* and C. M. Soukoulis
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(Received 9 September 1999; revised manuscript received 17 Decembegr 1999

We numerically examine the time-dependent properties of nonlinear bistable multilayer structures for con-
stant wave illumination. We find that our system exhibits both steady-state and self-pulsing solutions. In the
steady-state regime, we examine the dynamics of driving the system between different transmission states by
injecting pulses, and we find optimal pulse parameters. We repeat this work for the case of a linear periodic
system with a nonlinear impurity layer.

PACS numbeps): 42.70.Qs, 42.65.Pc, 41.20.Jb, 42.65.Sf

I. INTRODUCTION [17] method to study the time-dependent properties of CW
propagation in multilayer structures with a Kerr type nonlin-
Nonlinear dielectric materialgl] exhibiting a bistable re- earity. We find our results generally in accord with those
sponse to intense radiation are key elements for an all-opticglbtained for systems with weak linear index modulafigp
digital technology. For certain input optical powers therewhich were solved with approximate methods. We next ex-
may exist two distinct transmission branches forming a hysamine the dynamics of driving the system from one trans-
teresis loop, which incorporates a history dependence intgssion state to the other by injecting a pulse, and try to find
the system’s response. Exciting applications involve opticafn® optimal pulse parameters for this switching. We also test
switches, logic gates, set-reset fast memory elements, etfOW these parameters change for a different initial phase or
[2]. Much interest has been given lately to periodic nonlineaf€duéncy of the pulse. Finally, we will repeat all work for
structures 3], in which because of the distributed feedbackthe.case of a linear multilayer structure with a nonlinear im-
mechanism, the nonlinear effect is greatly enhanced. In thgurlty layer.
low intensity limit, these structures are just Bragg reflectors
characterized by high transmission bands separated by pho- Il. FORMULATION
tonic band gap$4]. For high intensities and frequencies in-  Ejectromagnetic wave propagation in dielectric media is
side the transmission band, bistability results from the modugoyerned by Maxwell’s equations
lation of transmission by an intensity-dependent phase shift.
For frequencies inside the gap bistability originates from gap E Y
soliton formation[5], which can lead to much lower switch- M= —VXE, E:VX H. 1)
ing thresholdg6].

The response of nonlin.ear periodic structures iIIuminatqu\Ssuming here a Kerr type saturable nonlinearity and an iso-
by a coqstant waveCW) with a frequency ms@e. the photo- tropic medium, the electric flux densil§ is related to the
nic gap is generally separated into three regintigssteady- R
state response via stationary gap soliton formatiohself- electric fieldE by
pulsing via excitation of solitary waves, ar(di) chaotic. 215
Much theoreticalas well as experimentfl 3,14)) work has B e E4P 4P —el| et alE| g @)
been done for systems with a weak sinusoidal refractive in- 0 LN )
dex modulation and uniform nonlinearifg,7—10d, or deep
modulation multilayered systenj$,11,13. One case of in-  \yhere,=0. B, and Py, are the induced linear and nonlin-

terest is when the system is illuminated by a CW bias, andha glectric polarizations respectively. Here we will assume
switching between different transmission states is achievedy . |inear dispersion and so a frequency-independgnt

by means of external pulses. Such switching has alread . . = s .

been demonstrated experimentally for various kinds of non-%vpjrtlng th|.s t‘? o?tawE from D mvglves the solution of a
linearities[13,15,18, but, to our knowledge, a detailed study cubic equation ifE|. For =0 there is always only one real
of the dynamics, the optimal pulse parameters, and the st&00t, So there is no ambiguity. Far<0 this is true only for
bility under phase variations during injection has yet to bey>0- In our study we will user=—1 andy=(¢—1)"", so
performed. that for|E|—c, D— ¢,E.

In this paper we use the finite-difference-time-domain The structure we are considering consists of a periodic
array of 21 nonlinear dielectric layers in vacuum, each 20 nm
wide with €,=3.5, separated by a lattice constaat

*Present address: Concurrent Computing Laboratory for Materialss 200 nm. The linear, or low intensity, transmission coeffi-
Simulation(CCLMS) and Department of Physics and Astronomy, cient as a function of frequency is shown in Figa)l In the
Louisiana State University, Baton Rouge, LA 70803. numerical setting each unit cell is divided into 256 grids, half
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The amplitude of the CW is varied from zero to a maxi-
N , 00 , , mum of 0.7 with about 40 measurements in between. Results
035 Fr‘;;ﬁm‘;“fm oy 0% MpmlEl‘%’ are shown in Fig. (b), along with the corresponding one
from a time-independent approximation. The agreement be-
(c) il @ ] tween the two methods is exact for small intensities; how-
ever, after a certain input the output waves are no longer
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systems with a weak refractive index modulati@]. It is
AAs 00 interesting that the averaged output power is still in agree-

Lf L o Lf L ment with the time-independent results, something not men-

00

tioned in earlier work. For higher input values, the solution
FIG. 1. (a) The linear transmission diagram. The small arrow will again reach a steady state just before going to the second
indicates the frequency we used in the nonlinear stydy.The  nonlinear jump, after which it will again become pulsative.
nonlinear response: closéapen circles correspond to steady states This time, however, the averaged transmitted power is quan-
when increasing(decreasing the intensity, and crossefopen titatively different from the one predicted from time-
squarescorrespond to self-pulsing states when increagitegreas- independent calculations.
ing) Fhe intensity.(c) The intensity .configurz.ition for a.|0\.N trans- The nonlinear transmission jump originates from the
mission state(dg I_ntgnsnt)_/ configuration for high transmission state. aycitation of a stationary gap soliton when the incident in-
In all cases|E|* is in units of 1fa. tensity exceeds a certain threshold value. Due to the nonlin-
ear change of the dielectric constant, the photonic gap is
shifted locally in the area underneath the soliton, which be-
of them defining the highly refractive nonlinear layer. For comes effectively transparent, resembling a quantum well
the midgap frequency, this corresponds to about 316 gridwith the soliton being its bound state solutift8]. The in-
per wavelength in the vacuum area, and 1520 grids per efident radiation coupled to that soliton tunnels through the
fective wavelength in the nonlinear dielectric, where ofstructure and large transmission is achieved. We obtain a
course the length scale is different in the two regions. Stamaximum switching time of the order of 10Tp, or a fre-
bility considerations only require more than 20 grids perduency of 360 GHz, wher& =2L/c is the round trip time
wavelength[17]. Varying the number of the grids used, we in vacuum. The second_ transmission jump is related to the
found our results to be completely converged. On the twdEXcitation of two gap solitons, which however, are not stable,

sides of the system we apply absorbing boundary condition nd so transmission is pulsative. The Fourier tran_sfor_m of
[17]. the output shows that, after the second transmission jump,

We first study the structure’s response to an incomin he system pulsates at a frequeneya/2mc=0.407n

0.024, exactly three times the one of the first pulsating
constant_ plane wave of frequency close tq the gap ed.ggolution wal2wc=0.407=nx0.008, wheren is an integer.
wal27wc=0.407. For each value of the amplitude, we wait

! or much higher input values the response eventually be-
until the system reaches a steady state, and then calculate t Emes chaot?c. A m(F))re detailed descri;tion of the switcming

corresponding transmission and reflection coefficients. | rocess as well as the soliton generation dynamics can be
no steady state is achievable, we approximate them by avefs ;4 in Ref.[8].

aging the energy transmitted and reflected over a certain

perioql qf time, alway§ checking thgt energy conservatiqn IV. PULSE-DRIVEN SWITCHING

is satisfied. Then the incident amplitude is increased to its

next value, which is done adiabatically over a time period We next turn to the basic objective of this work. We
of 20 wave cycles, and measurements are repeated. Thissume a specific constant input amplitjée,|=0.185,
procedure continues until a desired maximum value igorresponding to the middle of the first bistable loop. De-
reached, and then we start decreasing the amplitude, repe®€nding on the system’s history, it can be either in the low

ing the same routine backwards. The form of the incidenfransmission state I, shown in FigicL, or in the high trans-
CW is mission state I, shown in Fig.(d), which are both steady

states. We want to study the dynamics of a pulse injected
into a system like that. More specifically, if it will drive the
min{(t—to),20T}| . system to switch from one state to t_he oth_er, we study how

Ecw(t)=| Acw+ 0|ACWT el“t.  (3) the fields change in the s.tructure during sywtchmg, for which
pulse parameters this will happen, and if these parameters
change for small phase and frequency fluctuations. We as-
sume Gaussian envelope pulses

where ty is the time when the amplitude change started, ,

Acw is the last amplitude value considered, ai.y the EP(O,t):Ape—(t—to—StW)z/twei‘”t, (4)
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third white curves in the “switch” graph of Fig. 21) Effectively
FIG. 2. The four different switching schemds) the final state  transparent are@) Input and output waves. The field intensji5]?

is the opposite of the initial statép) the final state is always a high is in units of 1]al. In thex axis, T is the time andT, is the round
transmission state) the final state is always a low transmission trip time T,=2L/c.
state;(d) no change of state. Theaxis is the dimensionless width )
of the pulse, and theaxis is the pulse amplitude in units ofj&].  Width W/c of a few hundredths of a picosecond and an en-
White areas indicate a successful operation, while black areas indf'9y £€=2.5 pJicnf. These energies may seem large, but
cate failure. they can be sufficiently lowered by increasing the number of

layers and using an incident frequency closer the the gap
whereAp is the pulse amplitudd, the time when injection edge.
starts, andV=2t,,c is the pulse’s full width at ¥ of maxi- In order to find more about how the switching occurs, in
mum amplitude. The beginning of tinteis the same as for Fig. 3 we plot the effective transparent areas and output
the CW, so there is no phase difference between them. Aftdields as a function of time, for the first three curves of Fig.
injection we wait until the system reaches a steady stat@(a). As expected, for the pulse from the first curve, the
again, and then measure the transmission and reflection cenergy for the soliton excitation is just right, and the output
efficients to determine the final state. During this time wefields are small compared to the input. For the other curves
save the field values inside the structure every few timeéhowever, there is an excess of energy. The system has to
steps, as well as the transmitted and reflected waves. Thiadiate this energy away before a stable gap soliton can be
procedure is repeated for various valuesAgf andt,,, for  created. It is interesting to note that this energy goes only in
both possible initial states. Our results are summarized ithe transmitted wave, not the reflected, and it consists of a
Fig. 2. White areas indicate the pulse parameters for whiclseries of pulsegl4]. For the second curve in Fig(& there
the intended switch was successful, while black areas indiis one pulse, for the third there are two, etc. The width and
cate parameters for which it failed. In Fig(a2 or the frequency of the pulses are independent of the incident pulse,
“switch” graph, the intended switching scheme is for the they are the known pulsating solutions we found in the CW
same pulse to be able to drive the system from state | to statase. So the system temporally goes into a pulsating state to
II, and vice versa. Fig.(®), or “switch all up,” is for a pulse  radiate away the energy excess before settling down into a
able to drive the system from | to Il, but fails to do the stable state. If this energy excess is approximately equal to
opposite, i.e. the final state is always I, independent or wha&n integer number of pulsdshe solitary waves from the
the initial state was. Similarly, Fig. (& or “switch all unstable solutions then we will have a successful switch,
down,” is for the pulse whose final state is always |, and Fig.otherwise it will fail. A similar behavior is found in the sys-
2(d), or "no switch,” for the pulse that does not induce any tem’s response during switch down for the first three curves
switch for any initial state. in Fig. 2(a), using exactly the same pulses as before for the

We find a rich structure on these parameter planes. Notewitch up. So the same pulse is capable of switching the

also that there is a specific cyclic order as one crosses thgystem up, and if reused, switching the system back down.
curves moving to higher pulse energiesd—b—a—c— Using the numbers assumed before for the nonlinearjty
etc. This indicates that there must be some kind of energthe pulses used in Fig. 3 arda) W/c=14fs, &
requirements for each desired switching scheme. After ana=2.5 uJ/cn?; (b) W/c=28 fs, £=12 uJ/cn?; and (c)
lyzing the curves it was found that only the first one in theW/c=42 fs, £&=32 pJdlcnf.
“switch” graph could be assigned to a simple constant Up to now, the injected pulse has been treated only as an
energy curv%~W|Ap|2. Since any switching involves the amplitude modulation of the CW source, i.e., they had the
creation or destraction of a stationary soliton, then thissame exactly frequency and there was no phase difference
should be its energy. In order to put some numbers, ibetween them. The naturally rising question is how an initial
we would assume a nonlinearityg|=10"° cn?/W, then we  random phase between the CW and the pulse, or a slightly
would need a CW of energy-34 MW/cn? and a pulse of different frequency, affect our results. We repeated the simu-
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for increasing(decreasingCW intensity.(c) Output waves during
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o
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FIG. 5. The four switching schemes described in Fig. 2 for the
case of a linear lattice with a nonlinear impurity layer. No simple
curved structure is found here. The pulse width and amplitude are
defined as in Fig. 2.

Iations for variou_s values of an initial phase diffe_rence, firstsjose to it. Because of the high of the mode, we can use
keeping them with the same frequency. We find that alfequencies extremely close to it, achieving very low switch-
though the results show qualitatively the same stripped struGng thresholdg22]. Here, however, we only want to study
ture as in Fig. 2, there are quantitative differences. The maighe switching mechanism, so we will use a shallow impurity
result is that there is not a set of pulse parameters that woulghode.
perform the desired switching successfully for any initial  The bistable input-output diagram, the output fields dur-
phase difference. Thus the pulse cannot be incoherent witing switching, and the field distributions in the two transmis-
the CW, i.e., generated at different sources, if a controlledion branches are also shown in Fig. 4. We observe a smaller
and reproducible switching mechanism is desired, but ratherelaxation time and of course the absence of pulsating solu-
should be introduced as an amplitude modulation of the CWtions. The parameters used afe=1 and wa/2wc=0.407,
However, if this phase could be controlled, then the switchwhich correspond to a frequency between the mode and the
ing operation would be controlled, and a single pulse wouldyap edge. We want to test if a pulse can drive this system to
be able to perform all different operations. switch between the two different transmission states, and
The picture does not change if we use pulses of slightlyagain test our results against phase and frequency perturba-
different frequency from the source. We used various pulsefions. The two states shown in Fig. 4 are for an input CW
with frequencies both higher and lower than the CW, and weémplitude of|Acy|=0.16. The results for coherent, pulse,
found a sensitive, rather chaotic, dependence on the initi@d"d CW amplitudes are shown in Fig. 5. We see that any
phase at injection time. The origin of this complex responsedesired form of switching can still be achieved, but the pa-
whether it is an artifact of the simple Kerr-type nonlinearity '@Meter plane graphs bear no simple explanations like the

model that we used, and if it should appear for other kinds oP"€S obtained for the nonlinear superlattice. Repeating the
nonlinearities, is not yet clear to as. More work is alsc)5|mulat|ons for incoherent beams and different frequencies,

. e obtain the same exactly results as before. Only phase-
needed on how these results would change if one used :
different| Acy| not located in the middle of the bistable Ioop,I cked beams can produce controlled and reproducible

; . witching.
a wider or narrower bistable loop, etc.; however, these woulc? 9
go more into the scope of engineering. VI. CONCLUSIONS
V. LINEAR LATTICE WITH We _have st_udied_the time-dependent switching pro.per.ties
A NONLINEAR IMPURITY LAYER of nonlinear dielectric multilayer systems for frequencies in-

side the photonic band gap of the corresponding linear struc-

layers e=eqe; with a nonlinear impurity layef19-23 €  pyise injection, and found correlations between the pulse, the
= €o(€e, + |E|?) wheree, #¢/. We will usea=+1 andy  stationary gap soliton, and the unstable solitary waves. A
=0. This system is effectively a Fabry-Perot cavity with thesmall dependence on the phase difference between the pulse
impurity (cavity) mode inside the photonic gap, as shown inand the CW is also found, requiring coherent beams for fully
Fig. 4@). The bistable response originates from its nonlinearcontrolled and reproducible switching. Similar results are
modulation with light intensity. The deeper this mode is inalso found for the case of a linear periodic structure with a
the gap, the stronger the linear dispersion for frequenciemsonlinear impurity.
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