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Pulse-driven switching in one-dimensional nonlinear photonic band gap materials:
a numerical study

E. Lidorikis* and C. M. Soukoulis
Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

~Received 9 September 1999; revised manuscript received 17 December 1999!

We numerically examine the time-dependent properties of nonlinear bistable multilayer structures for con-
stant wave illumination. We find that our system exhibits both steady-state and self-pulsing solutions. In the
steady-state regime, we examine the dynamics of driving the system between different transmission states by
injecting pulses, and we find optimal pulse parameters. We repeat this work for the case of a linear periodic
system with a nonlinear impurity layer.

PACS number~s!: 42.70.Qs, 42.65.Pc, 41.20.Jb, 42.65.Sf
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I. INTRODUCTION

Nonlinear dielectric materials@1# exhibiting a bistable re-
sponse to intense radiation are key elements for an all-op
digital technology. For certain input optical powers the
may exist two distinct transmission branches forming a h
teresis loop, which incorporates a history dependence
the system’s response. Exciting applications involve opt
switches, logic gates, set-reset fast memory elements,
@2#. Much interest has been given lately to periodic nonlin
structures@3#, in which because of the distributed feedba
mechanism, the nonlinear effect is greatly enhanced. In
low intensity limit, these structures are just Bragg reflect
characterized by high transmission bands separated by
tonic band gaps@4#. For high intensities and frequencies i
side the transmission band, bistability results from the mo
lation of transmission by an intensity-dependent phase s
For frequencies inside the gap bistability originates from g
soliton formation@5#, which can lead to much lower switch
ing thresholds@6#.

The response of nonlinear periodic structures illumina
by a constant wave~CW! with a frequency inside the photo
nic gap is generally separated into three regimes:~i! steady-
state response via stationary gap soliton formation,~ii ! self-
pulsing via excitation of solitary waves, and~iii ! chaotic.
Much theoretical~as well as experimental@13,14#! work has
been done for systems with a weak sinusoidal refractive
dex modulation and uniform nonlinearity@3,7–10#, or deep
modulation multilayered systems@5,11,12#. One case of in-
terest is when the system is illuminated by a CW bias, a
switching between different transmission states is achie
by means of external pulses. Such switching has alre
been demonstrated experimentally for various kinds of n
linearities@13,15,16#, but, to our knowledge, a detailed stud
of the dynamics, the optimal pulse parameters, and the
bility under phase variations during injection has yet to
performed.

In this paper we use the finite-difference-time-doma
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@17# method to study the time-dependent properties of C
propagation in multilayer structures with a Kerr type nonli
earity. We find our results generally in accord with tho
obtained for systems with weak linear index modulation@8#,
which were solved with approximate methods. We next
amine the dynamics of driving the system from one tra
mission state to the other by injecting a pulse, and try to fi
the optimal pulse parameters for this switching. We also
how these parameters change for a different initial phas
frequency of the pulse. Finally, we will repeat all work fo
the case of a linear multilayer structure with a nonlinear i
purity layer.

II. FORMULATION

Electromagnetic wave propagation in dielectric media
governed by Maxwell’s equations

m
]HW

]t
52¹W 3EW ,

]DW

]t
5¹W 3HW . ~1!

Assuming here a Kerr type saturable nonlinearity and an
tropic medium, the electric flux densityDW is related to the
electric fieldEW by

DW 5e0EW 1PW L1PW NL5e0S e r1
auEW u2

11guEW u2D EW , ~2!

whereg>0. PW L andPW NL are the induced linear and nonlin
ear electric polarizations respectively. Here we will assu
zero linear dispersion and so a frequency-independente r .
Inverting this to obtainEW from DW involves the solution of a
cubic equation inuEW u. For a>0 there is always only one rea
root, so there is no ambiguity. Fora,0 this is true only for
g.0. In our study we will usea521 andg5(e r21)21, so
that for uEW u→`, DW →e0EW .

The structure we are considering consists of a perio
array of 21 nonlinear dielectric layers in vacuum, each 20
wide with e r53.5, separated by a lattice constanta
5200 nm. The linear, or low intensity, transmission coef
cient as a function of frequency is shown in Fig. 1~a!. In the
numerical setting each unit cell is divided into 256 grids, h
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of them defining the highly refractive nonlinear layer. F
the midgap frequency, this corresponds to about 316 g
per wavelength in the vacuum area, and 1520 grids per
fective wavelength in the nonlinear dielectric, where
course the length scale is different in the two regions. S
bility considerations only require more than 20 grids p
wavelength@17#. Varying the number of the grids used, w
found our results to be completely converged. On the t
sides of the system we apply absorbing boundary condit
@17#.

We first study the structure’s response to an incom
constant plane wave of frequency close to the gap e
va/2pc50.407. For each value of the amplitude, we w
until the system reaches a steady state, and then calculat
corresponding transmission and reflection coefficients
no steady state is achievable, we approximate them by a
aging the energy transmitted and reflected over a cer
period of time, always checking that energy conservat
is satisfied. Then the incident amplitude is increased to
next value, which is done adiabatically over a time per
of 20 wave cycles, and measurements are repeated.
procedure continues until a desired maximum value
reached, and then we start decreasing the amplitude, re
ing the same routine backwards. The form of the incid
CW is

ECW~ t !5S ACW1dACW

min$~ t2t0!,20T%

20T Deivt, ~3!

where t0 is the time when the amplitude change start
ACW is the last amplitude value considered, anddACW the

FIG. 1. ~a! The linear transmission diagram. The small arro
indicates the frequency we used in the nonlinear study.~b! The
nonlinear response: closed~open! circles correspond to steady stat
when increasing~decreasing! the intensity, and crosses~open
squares! correspond to self-pulsing states when increasing~decreas-
ing! the intensity.~c! The intensity configuration for a low trans
mission state.~d! Intensity configuration for high transmission stat
In all cases,uEu2 is in units of 1/uau.
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amplitude increment. One wave cycleT involves about
2000 time steps.

III. RESPONSE TO A CW BIAS

The amplitude of the CW is varied from zero to a max
mum of 0.7 with about 40 measurements in between. Res
are shown in Fig. 1~b!, along with the corresponding on
from a time-independent approximation. The agreement
tween the two methods is exact for small intensities; ho
ever, after a certain input the output waves are no lon
constant but pulsative. This is in accord with the results
tained with the slowly varying envelope approximation f
systems with a weak refractive index modulation@8#. It is
interesting that the averaged output power is still in agr
ment with the time-independent results, something not m
tioned in earlier work. For higher input values, the soluti
will again reach a steady state just before going to the sec
nonlinear jump, after which it will again become pulsativ
This time, however, the averaged transmitted power is qu
titatively different from the one predicted from time
independent calculations.

The nonlinear transmission jump originates from t
excitation of a stationary gap soliton when the incident
tensity exceeds a certain threshold value. Due to the non
ear change of the dielectric constant, the photonic gap
shifted locally in the area underneath the soliton, which
comes effectively transparent, resembling a quantum w
with the soliton being its bound state solution@18#. The in-
cident radiation coupled to that soliton tunnels through
structure and large transmission is achieved. We obta
maximum switching time of the order of 100Tr , or a fre-
quency of 360 GHz, whereTr52L/c is the round trip time
in vacuum. The second transmission jump is related to
excitation of two gap solitons, which however, are not stab
and so transmission is pulsative. The Fourier transform
the output shows that, after the second transmission ju
the system pulsates at a frequencyva/2pc50.4076n
30.024, exactly three times the one of the first pulsat
solution va/2pc50.4076n30.008, wheren is an integer.
For much higher input values the response eventually
comes chaotic. A more detailed description of the switch
process as well as the soliton generation dynamics can
found in Ref.@8#.

IV. PULSE-DRIVEN SWITCHING

We next turn to the basic objective of this work. W
assume a specific constant input amplitudeuACWu50.185,
corresponding to the middle of the first bistable loop. D
pending on the system’s history, it can be either in the l
transmission state I, shown in Fig. 1~c!, or in the high trans-
mission state II, shown in Fig. 1~d!, which are both steady
states. We want to study the dynamics of a pulse injec
into a system like that. More specifically, if it will drive th
system to switch from one state to the other, we study h
the fields change in the structure during switching, for wh
pulse parameters this will happen, and if these parame
change for small phase and frequency fluctuations. We
sume Gaussian envelope pulses

EP~0,t !5APe2(t2t025tw)2/tw
2
eivt, ~4!
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whereAP is the pulse amplitude,t0 the time when injection
starts, andW52twc is the pulse’s full width at 1/e of maxi-
mum amplitude. The beginning of timet is the same as fo
the CW, so there is no phase difference between them. A
injection we wait until the system reaches a steady s
again, and then measure the transmission and reflection
efficients to determine the final state. During this time
save the field values inside the structure every few ti
steps, as well as the transmitted and reflected waves.
procedure is repeated for various values ofAP and tw , for
both possible initial states. Our results are summarized
Fig. 2. White areas indicate the pulse parameters for wh
the intended switch was successful, while black areas i
cate parameters for which it failed. In Fig. 2~a!, or the
‘‘switch’’ graph, the intended switching scheme is for th
same pulse to be able to drive the system from state I to s
II, and vice versa. Fig. 2~b!, or ‘‘switch all up,’’ is for a pulse
able to drive the system from I to II, but fails to do th
opposite, i.e. the final state is always II, independent or w
the initial state was. Similarly, Fig. 2~c! or ‘‘switch all
down,’’ is for the pulse whose final state is always I, and F
2~d!, or ’’no switch,’’ for the pulse that does not induce an
switch for any initial state.

We find a rich structure on these parameter planes. N
also that there is a specific cyclic order as one crosses
curves moving to higher pulse energies:→d→b→a→c→
etc. This indicates that there must be some kind of ene
requirements for each desired switching scheme. After a
lyzing the curves it was found that only the first one in t
‘‘switch’’ graph could be assigned to a simple consta
energy curveE;WuApu2. Since any switching involves th
creation or destraction of a stationary soliton, then t
should be its energy. In order to put some numbers
we would assume a nonlinearityuau51029 cm2/W, then we
would need a CW of energy.34 MW/cm2 and a pulse of

FIG. 2. The four different switching schemes:~a! the final state
is the opposite of the initial state;~b! the final state is always a hig
transmission state;~c! the final state is always a low transmissio
state;~d! no change of state. They axis is the dimensionless widt
of the pulse, and thex axis is the pulse amplitude in units of 1/Auau.
White areas indicate a successful operation, while black areas
cate failure.
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width W/c of a few hundredths of a picosecond and an e
ergy E.2.5 mJ/cm2. These energies may seem large, b
they can be sufficiently lowered by increasing the numbe
layers and using an incident frequency closer the the
edge.

In order to find more about how the switching occurs,
Fig. 3 we plot the effective transparent areas and out
fields as a function of time, for the first three curves of F
2~a!. As expected, for the pulse from the first curve, t
energy for the soliton excitation is just right, and the outp
fields are small compared to the input. For the other cur
however, there is an excess of energy. The system ha
radiate this energy away before a stable gap soliton can
created. It is interesting to note that this energy goes onl
the transmitted wave, not the reflected, and it consists o
series of pulses@14#. For the second curve in Fig. 2~a! there
is one pulse, for the third there are two, etc. The width a
frequency of the pulses are independent of the incident pu
they are the known pulsating solutions we found in the C
case. So the system temporally goes into a pulsating sta
radiate away the energy excess before settling down in
stable state. If this energy excess is approximately equa
an integer number of pulses~the solitary waves from the
unstable solutions!, then we will have a successful switch
otherwise it will fail. A similar behavior is found in the sys
tem’s response during switch down for the first three cur
in Fig. 2~a!, using exactly the same pulses as before for
switch up. So the same pulse is capable of switching
system up, and if reused, switching the system back do
Using the numbers assumed before for the nonlinearitya,
the pulses used in Fig. 3 are~a! W/c514 fs, E
52.5 mJ/cm2; ~b! W/c528 fs, E512 mJ/cm2; and ~c!
W/c542 fs, E532 mJ/cm2.

Up to now, the injected pulse has been treated only as
amplitude modulation of the CW source, i.e., they had
same exactly frequency and there was no phase differe
between them. The naturally rising question is how an ini
random phase between the CW and the pulse, or a slig
different frequency, affect our results. We repeated the sim

di-

FIG. 3. Switch-up dynamics for~a! first, ~b! second, and~c!
third white curves in the ‘‘switch’’ graph of Fig. 2.~1! Effectively
transparent area~2! Input and output waves. The field intensityuEu2

is in units of 1/uau. In the x axis, T is the time andTr is the round
trip time Tr52L/c.
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lations for various values of an initial phase difference, fi
keeping them with the same frequency. We find that
though the results show qualitatively the same stripped st
ture as in Fig. 2, there are quantitative differences. The m
result is that there is not a set of pulse parameters that w
perform the desired switching successfully for any init
phase difference. Thus the pulse cannot be incoherent
the CW, i.e., generated at different sources, if a contro
and reproducible switching mechanism is desired, but ra
should be introduced as an amplitude modulation of the C
However, if this phase could be controlled, then the swit
ing operation would be controlled, and a single pulse wo
be able to perform all different operations.

The picture does not change if we use pulses of sligh
different frequency from the source. We used various pu
with frequencies both higher and lower than the CW, and
found a sensitive, rather chaotic, dependence on the in
phase at injection time. The origin of this complex respon
whether it is an artifact of the simple Kerr-type nonlinear
model that we used, and if it should appear for other kinds
nonlinearities, is not yet clear to as. More work is al
needed on how these results would change if one use
different uACWu not located in the middle of the bistable loo
a wider or narrower bistable loop, etc.; however, these wo
go more into the scope of engineering.

V. LINEAR LATTICE WITH
A NONLINEAR IMPURITY LAYER

Besides increasing the number of layers to achieve lo
switching thresholds, one can use a periodic array of lin
layers e5e0e r with a nonlinear impurity layer@19–22# e

5e0(e r81auEW u2) wheree rÞe r8. We will usea511 andg
50. This system is effectively a Fabry-Perot cavity with t
impurity ~cavity! mode inside the photonic gap, as shown
Fig. 4~a!. The bistable response originates from its nonlin
modulation with light intensity. The deeper this mode is
the gap, the stronger the linear dispersion for frequen

FIG. 4. Linear lattice with a nonlinear impurity layer:~a! linear
transmission diagrams.~b! Nonlinear response; solid~open! circles
for increasing~decreasing! CW intensity.~c! Output waves during
switch-up.~d! Output waves during switch-down.~e! Intensity con-
figuration for the low transmission state.~f! High transmission state
uEu2 andTr are defined as in Fig. 3.
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close to it. Because of the highQ of the mode, we can use
frequencies extremely close to it, achieving very low switc
ing thresholds@22#. Here, however, we only want to stud
the switching mechanism, so we will use a shallow impur
mode.

The bistable input-output diagram, the output fields d
ing switching, and the field distributions in the two transm
sion branches are also shown in Fig. 4. We observe a sm
relaxation time and of course the absence of pulsating s
tions. The parameters used aree r851 andva/2pc50.407,
which correspond to a frequency between the mode and
gap edge. We want to test if a pulse can drive this system
switch between the two different transmission states,
again test our results against phase and frequency pertu
tions. The two states shown in Fig. 4 are for an input C
amplitude of uACWu50.16. The results for coherent, puls
and CW amplitudes are shown in Fig. 5. We see that
desired form of switching can still be achieved, but the p
rameter plane graphs bear no simple explanations like
ones obtained for the nonlinear superlattice. Repeating
simulations for incoherent beams and different frequenc
we obtain the same exactly results as before. Only pha
locked beams can produce controlled and reproduc
switching.

VI. CONCLUSIONS

We have studied the time-dependent switching proper
of nonlinear dielectric multilayer systems for frequencies
side the photonic band gap of the corresponding linear st
ture. The system’s response is characterized by both st
and self-pulsing solutions. We examined the dynamics
driving the system between different transmission states
pulse injection, and found correlations between the pulse,
stationary gap soliton, and the unstable solitary waves
small dependence on the phase difference between the p
and the CW is also found, requiring coherent beams for fu
controlled and reproducible switching. Similar results a
also found for the case of a linear periodic structure with
nonlinear impurity.

FIG. 5. The four switching schemes described in Fig. 2 for
case of a linear lattice with a nonlinear impurity layer. No simp
curved structure is found here. The pulse width and amplitude
defined as in Fig. 2.
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